
Neuronal Cascades
Release 0.0.1

Bengier Ülgen Kılıç

Feb 10, 2023

CONTENTS:

1 Introduction 3
1.1 Geometric and Noisy Geometric Ring complexes . 3
1.2 Simplicial Threshold Model . 6
1.3 Neuronal Subtypes . 6

2 Tutorial 9
2.1 Initiate a Geometric_Brain_Network object . 9
2.2 Inheriting neuron objects . 9
2.3 Run a single example cascade . 10
2.4 Running experiments without changing the network connectivity 11
2.5 Running simplicial cascades . 11
2.6 Neurons with memory and refractory period . 11
2.7 Running stochastic models . 15
2.8 Looking at the cascade size . 15
2.9 Run a full scale experiment . 15
2.10 Persistence diagrams . 15

3 Semantics of Neuronal Cascades 21

4 Indices and tables 27

Index 29

i

ii

Neuronal Cascades, Release 0.0.1

Neuronal Cascades is a python package for simulating spreading processes, such as Watts-Thresholds model [1,2]
or Simplicial Threshold model [3] on networks. For example, for STM cascades, a vertex 𝑣𝑖 becomes active only when
the activity across its simplicial neighbors surpasses a threshold 𝑇𝑖. See the paper [3] for details.

ref [1] - Watts, Duncan J. A simple model of global cascades on random networks, PNAS, 99, 9, 2002,
10.1073/pnas.082090499.

ref [2] - Taylor, D., Klimm, F., Harrington, H. et al. Topological data analysis of contagion maps for
examining spreading processes on networks. Nature Communications, 6, 7723 (2015). https://doi.
org/10.1038/ncomms8723

ref [3] - Kilic, B.Ü., Taylor, D. Simplicial cascades are orchestrated by the multidimensional geom-
etry of neuronal complexes. Communications Physics, 5, 278 (2022). https://doi.org/10.1038/
s42005-022-01062-3

CONTENTS: 1

https://doi.org/10.1038/ncomms8723
https://doi.org/10.1038/ncomms8723
https://doi.org/10.1038/s42005-022-01062-3
https://doi.org/10.1038/s42005-022-01062-3

Neuronal Cascades, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Here, we develop computational framework for interplay between the dynamics (spreading process) and network topol-
ogy manifesting through higher-order connections embedded in a manifold structure for neuronal activity. One can
study spatio-temporal patterns of STM cascades over noisy geometric complexes, which contain both short- and long-
range simplices and are a generalization of noisy geometric networks.

In this module, one can investigate the dynamics of a Simplicial Threshold model (STM) starting from a seed cluster
and spreading across the underlying simplicial complex. The model and hence the package is as general as possible in
a way that one can play with the parameters to obtain different network topologies and cascade models. There are 3
main parameter groups summarized under Network paramaters, Dynamics parameters and Neuron parameters.

1.1 Geometric and Noisy Geometric Ring complexes

A geometric network is a set of nodes and edges where the nodes connected to their ‘close’ neighbors in a euclidean
distance manner.

Noisy geometric networks are obtained by connecting ‘distant’ vertices of the geometric network. These network topol-
ogy manipulations are shown to demonstrate various contagion spread phenomenans such as wavefront propagation
(WFP) or appearance of new clusters (ANC) in these networks.

A noisy ring complex involves vertices that lie along a 1D manifold that is embedded in a 2D ambient space. (Vertices
are placed slightly alongside the manifold to allow easy visualization of 2-simplices.) Each vertex has 𝑑(𝐺) geometric
edges to nearby vertices and 𝑑(𝑁𝐺) nongeometric edge to a distant vertex. Higher-dimensional simplices arise in the
associated clique complex and are similarly classified. An STM cascade exhibits WFP when it progresses along the
ring manifold, and ANC events when it jumps across a long-range edge or higher-dimensional simplex.

NETWORK PARAMETERS
size = 400 # number of neurons
GD = 10 # geometric degree
nGD = 4 # non-geometric degree
topology = 'Ring' or 'random_Ring'
noise_type = 'k-regular' or 'ER-like' or '2D_k-regular'

Alternatively, one can input any adjacency matrix in order to run simulations on other networks that are not generated
by the above options. In that case, network parameters can be modified as below.

NETWORK PARAMETERS
size = 400
G = nx.grid_2d_graph(size, size)
topology = 'lattice'
matrix = nx.adjacency_matrix(G).todense()

3

Neuronal Cascades, Release 0.0.1

0 - simplex

1 - simplex

2 - simplex

3 - simplex

active edge inactive edge

A B

active node inactive nodeboundary node

0

1

2

3

4

5

-2

-1-3

-4

direction of wavefront

geometrically
distant contagion

cluster

short-range edge

long-range edge

short-range 2-simplex

long-range 2-simplex

contagion clusterC

active triangle inactive triangle
 (type 1)

inactive triangle
 (type 2)

4 Chapter 1. Introduction

Neuronal Cascades, Release 0.0.1

RING RANDOM RING
k-Regular k-Regular

RING
Erdos-Renyi-like

RING
2D-k-Regular

1.1. Geometric and Noisy Geometric Ring complexes 5

Neuronal Cascades, Release 0.0.1

1.2 Simplicial Threshold Model

We are inspired by neuoronal cascades to asses the spreading phenomena. The core function that we run our experi-
ments decides if a given neuron is going to fire or not by a sigmoid function 𝑓(𝑅𝑖, 𝐶) = 1

1+exp−𝐶.𝑅𝑖
where 𝑅𝑖, the sim-

plicial exposure, is a function of current network history defined by𝑅𝑖 =
[︁
(1−𝐾) *

∑︀
𝑒∈𝐸𝑖

𝑒
𝑑𝑒
𝑖
+ (𝐾) *

∑︀
𝑡∈𝑇𝑖

𝑡
𝑑𝑡
𝑖

]︁
−

𝜏𝑖 where 𝐸𝑖 is the set of active edge neighbors, 𝑇𝑖 is the set of active triangle neighbors of node 𝑖, 𝑑𝑒𝑖 and 𝑑𝑡𝑖 are edge
and triangle degrees of node 𝑖 respectively. The constant 𝐾 ,2-simplex influence, is used to strike a balance between
traditional activation maps and higher order, or simplicial, cascade maps.

The main class we use Geometric_Brain_Network comes with several methods that we can manipulate the nature of
the contagion very easily. For example, one can run either a stochastic or deterministic model by varying the parameter
𝐶. Moreover, 𝐾 = 0 recovers an edge contagion whereas 𝐾 = 1 recovers a pure triangle contagion.

DYNAMICS PARAMETERS
K = 0.5 # 2-simplex influence ranging between 0 and 1. edge-dominant model if 0,␣
→˓triangle-dominant model if 1.
C = 10000 # Stochasticity parameter. Higher the more deterministic
TIME = 500 # Number of discrete time-steps to run one single cascade
seed = 200 # seed node to initialize the cascade

1.3 Neuronal Subtypes

In the package, Geometric_Brain_Network object has a subclass called neuronwhich can have individual activation
thresholds as well as memory and refractory periods as a function of discrete time steps. This generalization enables
heterogenity in the experiments as well as complexity of the non-trivial interactions.

NEURON PARAMETERS
threshold = 0.1 # vertex activation threshold
memory = TIME # number of discrete time steps that neuron stays active once they are␣
→˓active. If 0, neuron will stay active only 1 time step.
rest = 500 # number of discrete time-steps that neuron stays in the refrectaroy period.␣
→˓In this state, neuorons are not allowed to get active.

6 Chapter 1. Introduction

Neuronal Cascades, Release 0.0.1

Fig. 1: Set of neuronal activation functions as a function of 𝐶.

1.3. Neuronal Subtypes 7

Neuronal Cascades, Release 0.0.1

membrane
potential

time

membrane
potential

time

membrane
potential

time

membrane
potential

timelong refractory

Memory =
Rest = 0

Memory = 0
Rest = 0

Memory = 1
Rest = 1

Memory = 1
Rest = 8

8 Chapter 1. Introduction

CHAPTER

TWO

TUTORIAL

2.1 Initiate a Geometric_Brain_Network object

Create a simplicial ring complex on a ring. Topology is only available for a ring now. GD, geometric degree, is the
local neighbors of a neurons whereas nGD, nongeometric degree, is the distant neighbors of a neuron.

NETWORK VARIABLES
size = 400
GD = 10
nGD = 4
topology = 'Ring'
noise = 'k-Regular'
network = Geometric_Brain_Network.Geometric_Brain_Network(size, geometric_degree = GD,␣
→˓nongeometric_degree = nGD, manifold = topology, noise_type = noise)

2.2 Inheriting neuron objects

Define neuronal properties and then use get_neurons to inherit individual neurons into the network.

EXPERIMENT VARIABLES
TIME = 100 ## number of iterations
seed = int(size/2) ## seed node
C = 10000 ## constant for tuning stochasticity(high C yields deterministic experiments)
K = 0 ## constant weighing the edges vs triangles K=0 pure edge contagions, K=1 pure␣
→˓triangle contagion

#NEURON VARIABLES
threshold = 0.2 # node threshold
memory = TIME ##When a node is activated, it stays active forever(SI model) when memory␣
→˓= TIME.
rest = 0# neurons don't rest

##INITIATE NEURONS and Inherit them
neurons = [Geometric_Brain_Network.neuron(i, memory = memory, rest = rest, threshold =␣
→˓threshold) for i in range(size)]
network.get_neurons(neurons)## this is for runnning experiments with new set of neurons␣
→˓without changing the network

9

Neuronal Cascades, Release 0.0.1

2.3 Run a single example cascade

Core function run_dynamic runs an experiment with given variables.

activation1, Q1 = BN.run_dynamic(seed, TIME, C, K)

Fig. 1: A single experiment starting at the seed node 200. Initial wavefront propagation can be observed.

10 Chapter 2. Tutorial

Neuronal Cascades, Release 0.0.1

2.4 Running experiments without changing the network connectivity

One may want to work with a different set of experiment or neuronal variables without changing the underlying topol-
ogy. This is when get_neurons function comes handy.

with a new set of variables you can run a new experiment without changing the network
K = 0
threshold = 0.3
memory = TIME
rest = 0

neurons_2 = [neuron(i, memory = memory, rest = rest, threshold = threshold) for i in␣
→˓range(size)]
BN.get_neurons(neurons_2)

activation2, Q2 = BN.run_dynamic(seed, TIME, C, K)

2.5 Running simplicial cascades

Simplicial cascades can be ran by simply varying the parameter 𝐾 between 0 and 1.

with a new set of variables you can run a new experiment without changing the network
K = 1
threshold = 0.2
memory = TIME
rest = 0

neurons_3 = [neuron(i, memory = memory, rest = rest, threshold = threshold) for i in␣
→˓range(size)]
BN.get_neurons(neurons_3)

activation3, Q3 = BN.run_dynamic(seed, TIME, C, K)

2.6 Neurons with memory and refractory period

Our model is as general as it can be. So, neurons can have arbitrary number of memory or refractory period given in
discrete time steps. This generalization increases complexity of the dynamics really quick.

K = 0.5 # average of edge and triangle contagions
memory = 1## memory of a neuron is how many time steps neurons are going to stay active␣
→˓after they activated once
rest = 0#rest of a neuron is how many time steps neurons are going to be silent after␣
→˓they run out of memory, refractory period.
threshold = 0.2

neurons_4 = [neuron(i, memory = memory, rest = rest, threshold = threshold) for i in␣
→˓range(size)]

BN.get_neurons(neurons_4)
(continues on next page)

2.4. Running experiments without changing the network connectivity 11

Neuronal Cascades, Release 0.0.1

Fig. 2: We increased the global node thresholds to 0.3 which slowed down the signal, wavefront.

12 Chapter 2. Tutorial

Neuronal Cascades, Release 0.0.1

Fig. 3: Even though the global node threshold is 0.2 we observe a slow signal. The reason is that we set K=1 which
implies a full triangle contagion.

2.6. Neurons with memory and refractory period 13

Neuronal Cascades, Release 0.0.1

(continued from previous page)

activation4, Q4 = BN.run_dynamic(seed, TIME, C, K)

Fig. 4: Slow signal propagation where neurons are active only 1 time step. Signal spreads as the neurons blink.

14 Chapter 2. Tutorial

Neuronal Cascades, Release 0.0.1

2.7 Running stochastic models

Stochasticity of the neuronal responses can be adjusted using the experiment variable𝐶. Higher values make the system
deterministic.

K = 1 ## triangle contagion
memory = 2## memory of a neuron is how many time steps neurons are going to stay active␣
→˓after they activated once
rest = 1#rest of a neuron is how many time steps neurons are going to be silent after␣
→˓they run out of memory, refractory period.
threshold = 0.2
C = 10 ## make the system stochastic, higher values(C>500) is going to make the system␣
→˓deterministic

neurons_5 = [neuron(i, memory = memory, rest = rest, threshold = threshold) for i in␣
→˓range(size)]

BN.get_neurons(neurons_5)

activation5, Q5 = BN.run_dynamic(seed, TIME, C, K)

2.8 Looking at the cascade size

We can plot the size of the active nodes as a function of time.

Q = [Q1,Q2,Q3,Q4,Q5]
fig, ax = BN.display_comm_sizes_individual(Q,labels)

2.9 Run a full scale experiment

In order to asses global features, we run experiments for every seed node i and obtain the activation times for every
neuron j i.e. create a distance matrix whose (i,j) entry is the first time the node j is activated on a contagion starting
from i. Distance matrices enable a global scale TDA analysis.

FAT, CS = BN.make_distance_matrix(TIME, C, K)

2.10 Persistence diagrams

Once we created the distance matrices, we can look at the topological features across different contagions and different
topologies.

delta_min, delta_max = BN.compute_persistence(FAT, spy = True)##returns the lifetime␣
→˓difference of the longest living one cycles(delta_min) and lifetime difference of the␣
→˓longest and shorthest living one cycles(delta_max)

2.7. Running stochastic models 15

Neuronal Cascades, Release 0.0.1

Fig. 5: As the refractory period is nonzero, complexity of the system increases exponentially.

16 Chapter 2. Tutorial

Neuronal Cascades, Release 0.0.1

Fig. 6: Spread of the signal as a function of active neurons.

2.10. Persistence diagrams 17

Neuronal Cascades, Release 0.0.1

Fig. 7: The distance matrix. The input for the persistent homology.

18 Chapter 2. Tutorial

Neuronal Cascades, Release 0.0.1

Fig. 8: Persistence diagram computed from the distance matrix via Rips filtration. Green is 1-D features, red is 0-D
features.

2.10. Persistence diagrams 19

Neuronal Cascades, Release 0.0.1

20 Chapter 2. Tutorial

CHAPTER

THREE

SEMANTICS OF NEURONAL CASCADES

class Geometric_Brain_Network.Geometric_Brain_Network(size, geometric_degree=1,
nongeometric_degree=0, manifold='Ring',
noise_type='k-regular', matrix=None,
perturb=0, higher_order=False)

Bases: object

Geometric Brain Network object to run simplicial cascades on.

N
Size, number of nodes in the network.

Type int

GD
Geometric degree of the network.

Type int

nGD
non-Geometric degree of the network.

Type int

manifold
The geometric topology of the network. Only ‘Ring’ is available currently.

Type str

text
Summary of the network.

Type str

A
Adjacency matrix of the graph.

Type array n x n

nodes
A list of neuron objects that corresponds to the nodes of the network in which IDs of the neurons match
with the IDs of the nodes.

Type List

time
An intrinsic time property to keep track of number of iterations of the experiments.

Type int

21

Neuronal Cascades, Release 0.0.1

triangles
A dictionay of the triangles of the network where keys are node ids and values are lists of pairs of node ids
that makes up a triangle together with the key value.

Type dict

higher_order
Flag if a higher-order experiment is to be run, that is K>0.

Type Boolean

Parameters
• size (int) – Size of the network to be initialized.

• geometric_degree (int) – Uniform number of local neighbors that every node has.

• nongeometric_degree (int) – Fixed number of distant neighbors that every node has.

• manifold (str) – Type of the network to be created. If ‘Ring’ or ‘random_Ring’ then a
syntehtic ring network will be created, if ‘lattice’ then matrix argument can be used to input
any adjacency matrix.

• noise_type (str) – k-regular or er-like

• matrix (array-like) – Argument for inputting and adjacency matrix, ff manifold is ‘lat-
tice’.

• perturb (int) – Number of edges per vertex that the local manifold is to be perturbed.

• higher_order (Boolean) – Flag for higher-order experiments. Since extracting the trian-
gles is costly, when running an edge-based model, we don’t have to compute them.

ablate_geo_triangles(A)
Helper to remove links from the geometric strata. self.perturb many links per vertex will be removed.
:param A: Adjacency matrix of the network. :type A: array

Returns A – Perturbed adjacency matrix.

Return type array

add_noise_to_geometric()
This method adds non-geometric edges to the network that are long range. Every node will have nGD many
nongeometric, long range, edges. Options are ‘k-regular’, ‘ER_like’ and ‘2D_k-regular’.

compute_persistence(distances, dimension, spy)
Helper to compute persistent homology using the distance matrix by building a Rips filtration up to given di-
mension(topological features to be observed are going to be one less dimensional at max). First normalizes
the distances before the computation.

Parameters
• distances (n x n array) – distance matrix. First output of the
make_distance_matrix.

• dimension (int) – Max dimension of the topological features to be computed.

• spy (bool, optional) – Take a peak at the persistence diagram.

Returns
• Delta_min (array) – Difference of the lifetimes between longest and second longest living

two 1-cycles.

22 Chapter 3. Semantics of Neuronal Cascades

Neuronal Cascades, Release 0.0.1

• Delta_max (array) – Difference of the lifetimes between longest and shortest living two
1-cycles.

display_comm_sizes(Q, labels, TIME, C, threshold, K)
Helper to visualize the size of the active nodes during the contagion. Shades are indicating the max and
min values of the spread starting from different nodes, seed node variations.

Parameters
• Q (list, [n x T+1 array]) – Output of the make_distance_matrix appended in a list

• labels (list) – Figure labels corresponding to every list element for different thresholds.

• TIME (int) – A limit on the number of iterations.

• C (int) – Constant for tuning stochasticity. Higher values yield a deterministic model
whereas lower values yield a stochastic model.

• K (float) – Constant for weighing the edge and triangle activations.

Returns
• fig (matplotlib object) – Figure to be drawn.

• ax (matplotlib object) – Axis object for the plots.

get_neurons(neurons)
Sometimes we want to run experiments on a fixed network without changing the network connectivity.
In this case, we can initialize a new set of neurons and use this method to inherit them in the network–
changing only the neuronal properties but not the connectivity. :param neurons: A list of neuron objects.
:type neurons: list

Raises ValueError – If the number of neurons and the size of the network doesn’t match.

get_nodes_unique_triangles(nonunique_triangle_list, i)
Helper function for finding triangles that flags if a triangle is repeated.

Parameters
• nonunique_triangle_list (array) – Output of get_nonunique_triangle_list.

• i (int) – Index of the triangle whose repeated triangle neighbors to be removed.

Returns
• nonunique_triangle_list[tri_flag,1 (] : array) – Removed triangles for a given node.

• tri_flag (int) – flag

get_nonunique_triangle_list(A)
Helper method finding all of the triangles in the network including the repeated ones.

Parameters A (array) – Adjacency matrix of the network

Returns triangle_list – All triangles in the network.

Return type array

initial_spread(seed)
Helper method to activate the neighbors of the seed node with probablity 1.

Parameters seed (int) – Node ID of the seed node.

make_distance_matrix(TIME, C, K)
Main function if you are running experiments for a full set of seed nodes. This creates an activation matrix
by running the contagion on starting from every node and encoding the first activation times of each node.
Then, finding the euclidean distances between the columns of this matrix, creating a distance matrix so that

23

Neuronal Cascades, Release 0.0.1

the (i,j) entry corresponds to the average time(over the trials) that a contagion reaches node j starting from
node i.

Parameters
• TIME (int) – A limit on the number of iterations.

• C (int) – Constant for tuning stochasticity. Higher values yield a deterministic model
whereas lower values yield a stochastic model.

• K (float) – Constant for weighing the edge and triangle activations.

Returns
• distance_matrix (array) – n x n array with entries the activation times of contagions

starting from node i reaching to node j.

• Q (array) – n x t array with entries number of active nodes at every time step for conta-
gions starting at different seeds.

make_geometric()
Method for creating a geometric ring network. Options are either ‘Ring’ or ‘random_Ring’. This will be
called upon initialization automatically.

neighbor_input(node_id, K)
This is a key function as it computes the current input from neighbors of a given node, v_{i}.

Parameters
• node_id (int) – ID of the node whose input is going to be calculated.

• K (float) – Constant for weighing the edge and triangle activations.

Returns F – Neighboring neuronal input.

Return type float

refresh()
Helper method for setting the network time and tolerance to 0. This is necessary between different exper-
iments for any set of parameters including seed. Also, calls refresh_history which clears neuoron
histories.

Returns tolerance – Tolerance for experiments getting stuck at some point during contagion. Set
to 0 at every trial.

Return type int

return_triangles()
Function for getting the triangles in the network. This will be automatically called upon initialization of
Geometric_Brain_Network.

Returns triangles – A dictionay of the triangles of the network where keys are node ids and
values are lists of pairs of node ids that makes up a triangle together with the key value.

Return type dict

run_dynamic(seed, TIME, C, K)
Core function that runs the experiments. There are couple control flags for computational efficiency. If
self.time exceeds TIME, flag. If there is no active neurons left in the network, flag. If everything gets
activated once, flag. If tolerance exceeds 10, flag i.e. network repeats the exact state of itself 10 times.

Parameters
• seed (int) – Node ID of the seed node.

• TIME (int) – A limit on the number of iterations.

24 Chapter 3. Semantics of Neuronal Cascades

Neuronal Cascades, Release 0.0.1

• C (int) – Constant for tuning stochasticity. Higher values yield a deterministic model
whereas lower values yield a stochastic model.

• K (float) – Constant for weighing the edge and triangle activations.

Returns
• activation_times (array) – Activation times of all the nodes for contagions starting from

seed.

• size_of_contagion (array) – Number of active nodes at every iteration.

• number_of_clusters – Number of distinct cascade clusters.

sigmoid(node_id, C, K)
Sigmoid function which adjusts the stochasticity of the neurons depending on C.

Parameters
• node_id (int) – ID of the node whose input is going to be calculated.

• C (int) – Constant for tuning stochasticity. Higher values yield a deterministic model
whereas lower values yield a stochastic model.

• K (float) – Constant for weighing the edge and triangle activations.

Returns Z – Probability of firing.

Return type float

stack_histories(TIME)
Helper function for equalizing, stacking, the lengths of histories of ``neuron``s. Comes handy for visualiz-
ing single experiments.

Parameters TIME (int) – Number of discrete time steps for neuron histories to be visualized

Returns all_history – N x TIME matrix encoding histories of neurons.

Return type array

update_history(node_id, C, K)
Helper method to update the history of the neuron objects at every iteration.

Parameters
• node_id (int) – ID of the node whose history is going to be updates.

• C (int) – Constant for tuning stochasticity. Higher values yield a deterministic model
whereas lower values yield a stochastic model.

• K (float) – Constant for weighing the edge and triangle activations.

update_states()
Helper method to update the states of neuron objects at every iteration.

Returns
• excited (list) – List of active neurons at the current time.

• ready_to_fire (list) – List of neurons that are in the inactive state and ready to fire at
time+1`.

• rest (list) – List of neurons that doesn’t belong to either of those categories. This is empty
as long as there are no refractory period.

25

Neuronal Cascades, Release 0.0.1

class Geometric_Brain_Network.neuron(name, state, memory, rest, thresold)
Bases: Geometric_Brain_Network.Geometric_Brain_Network

Neuron objects corresponding to the nodes of Geometric_Brain_Network. This is a subclass of
Geometric_Brain_Network.

name
Neuron ID.

Type int

state
State of a neuron, can be 0,1 (or -1 if rest is nonzero).

Type int

memory
Memeory of a neuron. Once a neuron is activated, it is going to stay active memory many more discrete
time steps(so memory + 1 in total).

Type int

rest
Refractory peiod of a neuron in terms of discrete time steps.

Type int

threshold
Threshold of a neuron, resistance to excitibility.

Type int

history
History of a neuron encoding the states that it has gone through.

Type list

Parameters
• name (str) – Neuron ID

• state (int) – State of a neuron(1 Active, 0 Inactive and -1 rest, refractory).

• memory (int) – Number of discrete time steps a neuron is going to stay active once it is
activated.

• rest (int) – Refractory period of a neuron in discrete time steps.

• threshold (float) – Threshold of a neuron.

refresh_history()
Helper method that sets the history of every neuron to an empty list. It is called after refresh.

26 Chapter 3. Semantics of Neuronal Cascades

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

27

Neuronal Cascades, Release 0.0.1

28 Chapter 4. Indices and tables

INDEX

A
A (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
ablate_geo_triangles() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 22

add_noise_to_geometric() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 22

C
compute_persistence() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 22

D
display_comm_sizes() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 23

G
GD (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
Geometric_Brain_Network (class in Geomet-

ric_Brain_Network), 21
get_neurons() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 23

get_nodes_unique_triangles() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 23

get_nonunique_triangle_list() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 23

H
higher_order (Geomet-

ric_Brain_Network.Geometric_Brain_Network
attribute), 22

history (Geometric_Brain_Network.neuron attribute),
26

I
initial_spread() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 23

M
make_distance_matrix() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 23

make_geometric() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 24

manifold (Geometric_Brain_Network.Geometric_Brain_Network
attribute), 21

memory (Geometric_Brain_Network.neuron attribute), 26

N
N (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
name (Geometric_Brain_Network.neuron attribute), 26
neighbor_input() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 24

neuron (class in Geometric_Brain_Network), 25
nGD (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
nodes (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21

R
refresh() (Geometric_Brain_Network.Geometric_Brain_Network

method), 24
refresh_history() (Geomet-

ric_Brain_Network.neuron method), 26
rest (Geometric_Brain_Network.neuron attribute), 26
return_triangles() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 24

run_dynamic() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 24

29

Neuronal Cascades, Release 0.0.1

S
sigmoid() (Geometric_Brain_Network.Geometric_Brain_Network

method), 25
stack_histories() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 25

state (Geometric_Brain_Network.neuron attribute), 26

T
text (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
threshold (Geometric_Brain_Network.neuron at-

tribute), 26
time (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21
triangles (Geometric_Brain_Network.Geometric_Brain_Network

attribute), 21

U
update_history() (Geomet-

ric_Brain_Network.Geometric_Brain_Network
method), 25

update_states() (Geomet-
ric_Brain_Network.Geometric_Brain_Network
method), 25

30 Index

	Introduction
	Geometric and Noisy Geometric Ring complexes
	Simplicial Threshold Model
	Neuronal Subtypes

	Tutorial
	Initiate a Geometric_Brain_Network object
	Inheriting neuron objects
	Run a single example cascade
	Running experiments without changing the network connectivity
	Running simplicial cascades
	Neurons with memory and refractory period
	Running stochastic models
	Looking at the cascade size
	Run a full scale experiment
	Persistence diagrams

	Semantics of Neuronal Cascades
	Indices and tables
	Index

